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The Gradient Flow

Let ẋ = dx
dt . The gradient flow is described by the ODE

ẋ = −∇f(x) ; x(0) = x0

We can prove, if f is strongly convex, that

‖x(t)− x∗‖2 ≤ e−µt‖x0 − x∗‖2

If the step size is h = 1
L , then for t = kh we have

‖x(kh)− x∗‖2 ≤ e−k
µ
L ‖x0 − x∗‖2

We recover the rate of gradient method.
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Gradient method

ODE Proposed:
ẋ = −∇f(x)

Discretization on the interval [tk, tk+1]: Forward Euler.

ẋ(t) ≈ x(tk + h)− x(tk)
h

∇f(x(t)) ≈ ∇f(x(tk))

Writing xk = x(tk), and assuming tk = kh, we have

xk+1 = xk − h∇f(xk)
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Proximal Gradient method

ODE Proposed:
ẋ = −∇f(x)

Discretization on the interval [tk, tk+1]: Backward Euler.

ẋ(t) ≈ x(tk + h)− x(tk)
h

∇f(x(t)) ≈ ∇f(x(tk+1))

Writing xk = x(tk), and assuming tk = kh, we have

xk+1 = xk−h∇f(xk+1) = proxhf (xk)
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Nesterov’s method

Algorithm for convex functions (where βk = k−2
k+1 ):

xk+1 = yk −
1
L
f(yk)

yk+1 = −βkxk + (1 + βk)xk+1

For strongly convex functions, β = 1−
√
κ

1+
√
κ
where κ = µ

L is the condition number.

Two different models:
(A) Su, Boyd, Candes
(B) Wibisono, Wilson, Jordan ; Wilson, Recht, Jordan.
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Model (A) (Su, Boyd, Candes)

The authors starts from the algorithm, then takes the limits when the step size 1
L

goes to zero. The model becomes

ẍ+ r

t
ẋ = −∇f(x),

where r = 3 is called the «magic constant».

They recover the initial algorithm using non-trivial Forward Euler approximation.

They proved that the ODE converge at the accelerated rate, but nothing about
the convergence of the discretization.
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Model (B) (simplified) (Wibisono, Wilson, Recht, Jordan)

The authors introduce the following ODE,

d

dt
(x+ e−αt ẋ) = −eαt+βt∇f(x),

where αt, βt should follow the ideal scaling condition

β̇t ≤ eαt .

The authors show that
A (non-trivial) discretization of this ODE models Nesterov’s gradient
(forward Euler) and accelerated mirror descent (backward Euler).
The ODE converges at the accelerated rate.
There exists a "general" discrete Lyapunov function which proves the fast
convergence of the discrete scheme (but without any links with the ODE).
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For now, each discretization uses forward or backward Euler method (in a
complicated way) on a non-trivial ODE.

Question: What happen if we use a more sophisticated method on a simpler ODE?
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Linear multi-step methods
Euler method (Forward - explicit):

xk+1 − xk = −h∇f(xk)

Euler method (backward - implicit):

xk+1 − xk = −h∇f(xk+1)

Generalization:
s∑
i=0

ρixk+i = −h
s∑
i=0

σi∇f(xk+i)

Introducing the shift operator E : Exk → xk+1 ; E∇f(xk)→ ∇f(xk+1),(
s∑
i=0

ρiE
i

)
xk = −h

(
s∑
i=0

σiE
i

)
∇f(xk)

Let ρ and σ be two polynomials of degree s, with ρs = 1 (by convention). Then

ρ(E)xk = −hσ(E)∇f(xk)

A linear multi-step methods is uniquely defined by the pair (ρ, σ).
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Linear multi-step methods

Many important characteristics:
Consistency
(Order of convergence)
(Zero-stability)
(A-stability)
(G-stability)
...
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Consistency
Let (ρ, σ) be a linear multi-step method which generates the sequence xk on the
ODE ẋ = −∇f(x), using step size h. Assume that the first iterates are exact, i.e.

(xk, xk+1, ..., xk+s−1) = (x(tk), x(tk+1), ..., x(tk+s−1)) .

Then the method is consistent if and only if

lim
h→0

1
h
‖xk(h)− x(tk)‖ = 0

This is equivalent to te condition (proof using Taylor expansion)

ρ(1) = 0 and σ(1) = ρ′(1)

Intuition:
If we start at x0 = x∗, the first condition ensures xk = x∗ for all k.
If the second condition is not satisfied, then the method presents artificial
gain or damping.
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Nesterov’s method viewed as a linear multi-step method

(Reminder) Nesterov’s method:

xk+1 = yk −
1
L
f(yk)

yk+1 = −βkxk + (1 + βk)xk+1

If we expand yk+1,

yk+1 = −βk
(
yk−1 −

1
L
∇f(yk−1)

)
+ (1 + βk)

(
yk −

1
L
∇f(yk)

)
If we separate yk and ∇f(yk),

βkyk−1 − (1 + βk)yk + yk+1 = − 1
L

(−βk∇f(yk−1) + (1 + βk)∇f(yk))
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Nesterov’s method viewed as a linear multi-step method

βkyk−1 − (1 + βk)yk + yk+1 = − 1
L

(−βk∇f(yk−1) + (1 + βk)∇f(yk))

We will check if the method is consistent (i.e. ρ(1) = 0 and ρ′(1) = σ(1)):

First condition: ρ(1) = 0

ρ(1) = βk − (1 + βk) + 1 = 0 OK

Second condition: ρ′(1) = σ(1)⇔ hρ′(1) = hσ(1)

hρ′(1) = h(−(1 + βk) + 2) = h(1− βk)

hσ(1) = 1
L

(−βk + 1 + βk) = 1
L

Since we need to have ρ′(1) = σ(1), we conclude that h = 1
L(1−βk) .
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Nesterov’s method viewed as a linear multi-step method
The parameters of Nesterov’s method are thus (after identification)

ρk = [βk ; −(1 + βk) ; 1]
σk = (1− βk) ∗ [−βk ; 1 + βk ; 0]
hk = 1

L(1−βk)

Since βk ∈]0, 1[, the step size is larger.

Intuitive estimation of the rate of convergence:

(Convex case) If βk = k−2
k+1 , h = 1

L
k+1

3 . It means that we go ≈ k times faster
than usual gradient method. The rate is ≈ 1

k2 .

(Strongly convex case) If βk = 1−
√
κ

1+
√
κ
, h = 1

L
1+
√
κ

2 . We go ≈
√
κ times

faster. The rate is ≈ (1−
√
κ)k
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Conclusion

Main contributions:
Using simple arguments, we have strong links between many algorithms in
optimization and integration methods.
The approach is straightforward, and without any magic tricks we are able to
understand why Nesterov’s method is faster.
Using consistency, zero-stability and some optimality argument, we are able
to derive a family of two-steps methods (which contains Nesterov’s gradient
and Polyak’s heavy ball).

Future work:
Proof of convergence.
The convex case is not so clear: the method change over time.
Extension to non-Euclidean case?
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